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A Hierarchy of Model Systems for Biomaterials Interfaces:
Analysis by Electron, Ion and Vibrational Spectroscopies

Joseph A. Gardella, Jr.

Professor of Chemistry and Biomaterials
Department of Chemistry
State University of New York at Buffalo
Buffalo, NY 14260-3000 USA

Introduction

There are many problems and challenges in materials synthesis and
characterization which allow surface chemists to contribute to the global
understanding of mechanisms of interactions between materials and biology.
Research in our laboratories has involved both the development of analytical
(spectroscopic, microscopic, wettability) methodologies for surface chemical analysis
and the application to real problems in biomaterials surface chemistry. Using well
defined model systems is a means to bridge surface analytical techniques to real
applications.

An obvious approach in surface analytical chemistry is to ask questions which
involve developing an understanding of information for qualitative and quantitative
analysis. A third important area unique to surface analysis is the description of the
sampling depth of the method. Understanding the limits of imaging technologies also
is important. The goal from this work is to evolve to the application of static SIMS
to real polymer surfaces, to determine structure and reactivity and develop surface
structure-property relationships.

The major focus of this paper will be the most recent results from the
development of static Time of Flight SIMS. Three results are particularly promising
in the analysis of molecular biomaterials presented in this paper.

¢ ToF-SIMS has allowed the sequencing of covalently bound minimal

peptide sequences at fluoropolymer surfaces for neural cell adhesion
applications.

¢ Polymer tertiary structures such as double helices (produced by LBK

films of iso-PMMA) and & helices or B-sheet conformations can yield
different ion formation mechanisms in polymer ion formation may
yield a means to identify the tertiary structure of adsorbed
biomacromolecules.




¢ The kinetics of surface degradation from biodegradable polymer
biomaterials can be followed by oligomeric ion distributions yielded
from ToF-SIMS analysis.



Static SIMS - Background

Since SIMS is a mass spectrometric method, the understanding of mechanisms
of ion formation should lead to a better understanding of qualitative information.
Unlike the study of ion formation mechanisms for traditional mass spectrometry, the
challenge in SIMS is to relate mechanisms of ion formation in the reactive "selvedge"
region or the gas phase to the chemistry (structure, reactivity) of the existing surface
of the solid or material under study.

The development of quantitative methods for static SIMS would allow the
extension of powerful detection limits -and analysis of mixtures and multiple
components inherent in SIMS. Finally, combining the imaging ability with a
description of the surface sensitivity, or sampling/information depth, would lead to
a better means to describe sample heterogeneity in three dimensions.

Our approach has involved moving through a hierarchy of model systems
based on thin film preparation techniques; most particularly the use of Langmuir
Blodgett film preparation methods (1,2). These techniques allow the construction of
organized assemblies in monolayer and multilayer structures, where composition,
interfacial or surface chemistry and structure can be controlled. This model system
approach has been recently popularized by the widespread use of "Self Assembled
Monolayers (SAMs)" to model polymeric/molecular surfaces for technical and
biological applications by a number of prominent surface chemistry research groups
(2,3). SAMs are molecular and polymer systems which chemisorb and orient/pack
from solution, without the use of a film balance/transfer device such as the LB film
method uses. The interplay of analysis of monolayer (and multilayer) organic and
polymeric films is particularly interesting. The study of monolayer systems produced
by adsorption, assembly or Langmuir Blodgett methods by SIMS holds exceptional
promise both in the analysis of structure and chemistry in monolayers, and, as stated
above, for the use of films as model systems to be extend SIMS analysis to more
complex molecular and polymeric surface chemistry.

The initial focus in our laboratory has been entirely on the use of the
monolayer and multilayer films as known models to explore the information processes
in SIMS. Work began in the mid-1980's with a quadrupole static SIMS instrument,
which continues in operation currently. In.the area of qualitative ion formation
mechanisms, with the LB film approach allowing control of surface chemistry and
structure, we have shown the sensitivity of formation of molecular ions formed by
protonation and deprotonation of acids and bases (typically designated by (M+H)" and
(M-H)", where M is the neutral molecule) and anionized or cationized molecular
species such as (M+Anion) or (M+Cation)" and other related ions to structure and
surface chemistry ( 4-9). In addition, we have defined the details of damage in
multilayer assemblies (5, 10), leading to a more detailed quantitative approach to
molecular ion formation. This allowed us to derive for the first time a method for
determining concentration information for molecules from molecular ion intensities




(8, 11-16), or most recently, a quantitative assessment of molecular environment, e.g.
pH at a surface (15). These types of conclusions from molecular studies have
allowed direct extension to the understanding of ion formation from polymer surfaces
(6,7). A recent development is the use of the quantitative model to follow the kinetics
of polymerization of diacetylene LB films (17).

We believe the development of the quantitative methodology for SIMS to be
particularly significant. Static SIMS is notorious for failing two key analytical
performance characteristics; the lack of precision and inability to evaluate the
accuracy of the method. Our approach has allowed an exploration of using SIMS for
quantitative molecular surface analysis. This latter result could allow the
determination of kinetics .of crosslinking or degradation at polymer surfaces. At
present, as described below, we are working hard to evaluate the use of our new
quantitative SIMS methodology to study the kinetics of biodegradation of polymer
drug delivery materials. The quantitative SIMS method allows for the study of
small/trace concentrations in the presence of majority species, and can further the
understanding of molecular structure breakers in ordered organic thin films.

Qualitative Analysis

We have recently demonstrated the ability to sequence covalently bound
peptides at polymeric biomaterials surfaces. In collaborations with researchers at
Kodak Research Laboratories, Brown University and the University of Lausanne
(Switzerland) School of Medicine, along with Professor Bright's group at SUNY
Buffalo, we have synthesized a new class of lithographically surface modified
materials, where we have localized so-called minimal peptide sequences (18) in
spatially defined regions on a modified fluoropolymer surface. This work grew out
of our patented surface modification chemistry for fluoropolymers (19, 20) and the
localization of amine functional siloxane monolayers at the fluoropolymer surfaces
(20, 21), which were visualized by imaging ToF-SIMS (22). The latter materials were
shown to be extremely interesting for cellular attachment, promoted by unique protein
reorganization upon adsorption (23-26). In extending this work, we sought to more
carefully define surface chemistries which would trigger specific cellular function
through cellular recognition processes. Two specific sequences of interest were the
laminen derived peptides: YIGSR and IKVAV. We developed new chemistry for
the covalent attachment, and verified the primary sequence was retained upon linking
through the use of the ToF-SIMS. Figure 1 shows the structure of YIGSR at the
surface of the polymer and the resultant high mass positive ToF-SIMS of FEP-RSGIY
with ions labeled according to the typical Biemann scheme (27). These materials
were shown to be superior in directing neural cell adhesion and growth (28, 29).
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Evolving LB mode! systems toward more relevant polymer structure questions
has been furthered by the recently rediscovered field of LB films of polymers, even
those which are not obviously amphiphilic. Some typical examples include common
materials like PMMA and PEQ, of many polymers which can form monomolecular
films at the air water interface in a coiled structure (30, 31). This observation is
interesting in light of the capability of certain poly(amino acids), such as poly y-
methyl glutamate, to form monomolecular films at the air-water interface in known
(or determinable) tertiary configurations based on @ helix or B-sheet secondary
structures (31c¢).




We have been probing whether such resulting monolayer tertiary polymer
structure can influence secondary ion formation; if it can, then information about the
secondary or tertiary structure of a polymer surface may be extracted from the ToF-
SIMS ion formation mechanisms. A startling example of this thesis is illustrated by
the results of ToF-SIMS analysis of different secondary structures of PMMA
(isotactic, syndiotactic) which yield very different fragmentation patterns at high mass
(1000-3000 D) (Figure 2).

The ion patterns from isotactic PMMA could not be explained by
consideration of ion formation from statistical chain breaking models. The tertiary
structures of the LB preparations were determined using reflection absorption FT-IR
(32,33), which has previously shown that isotactic PMMA forms double helical
structures in monolayer preparations, similar to that formed in the solid state (34).

Ton formation mechanisms proposing unique rearrangements dependent on the
double helical structures have been determined to explain the entire series of ions
detected from the iso-PMMA. For example, the scheme shown in figure 3 focusses
on a rearrangement site within the closest point of contact of the two chains
intertwined in the double helix. A consistent loss of 84D can be used with the
previous approach of varying end group rearrangements to explain every fragment in
the spectrum of the iso-PMMA.

Differences in ToF-SIMS of PMMA

Figure 2 ToF-
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Figure 3 (Right) Structure of Iso-PMMA Double Helix in crystal (34) (Left) Scheme
of Ion Structures for Iso-PMMA dependant on Double Helical intrachain
rearrangement.
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Quantitative Analysis

Our newly developed quantitative methodology has been used most recently to study
the kinetics of biodegradation of polymer drug delivery materials. In this work, we
have studied the simulated biodegradation of poly(glycolic acid) (PGA), (with poly
(d-lactic acid) a common component of commercial biodegradable PGA/PLA
copolymer sutures and tissue scaffolding material (35). We have followed the extent
of surface etching by quantifying the decrease in the molecular weight of degraded
(hydrolyzed) chains at the surface of the material. By following the decreasing
molecular weight, we have a direct view of the changes in surface chemistry upon
etching. Figure 4 shows spectra of samples before and after hydrolysis in a biological
buffer system at 37°C for one hour. Note the presence of a new series of ions after
the hydrolysis. These ions are directly related to the molecular weight of low mass
species created from hydrolysis; and are not present in the unhydrolyzed polymer.
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By calculating an apparent molecular weight for the ions which are apparent after the
hydrolysis, we can relate the changes in the molecular weight parameter as a function
of time, as shown in Figure 5. This gives us an unparalleled view of the details of the
hydrolysis kinetics at the surface of the polymer, something which is only available
indirectly in the bulk of the sample by thermal analysis (36).
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